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Abstract
LoRa is about to become the standard for Low-Power Wide-
Area Networks (LPWANs), being well suited for many In-
ternet of Things (IoT) and sensor network applications. The
success of the technology sparked interest to adopt LoRa for
other, more challenging use-cases in industrial automation
or control of cyber-physical systems. Regular LoRa gateways
are, however, limited in their number of parallel demodula-
tion paths and restricted to a single network. To overcome
this limitation, we implement a software-defined, multichan-
nel LoRa receiver that is able to receive all common spreading
factors and uplink channel combinations of the LoRaWAN
EU868 frequency plan. In addition, our receiver does not rely
on hard-coded sync words, enabling a mechanism similar to
monitor mode in WLAN networks. Experimental evaluation
using Software-Defined Radios (SDRs) confirms superior
performance compared to commercial LoRa gateways.

CCS Concepts
• Networks→ Network experimentation.
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1 Introduction
LoRa is a proprietary Low-Power Wide-Area Network (LP-
WAN) physical layer technology that employs Chirp Spread
Spectrum (CSS) modulation, which is very robust against
noise and interference [7]. Due to the computationally inex-
pensive modulation and narrow-band characteristics, LoRa
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transceivers are cheap and exhibit exceptionally low power
consumption. This makes them ideal for battery-powered
wireless sensor nodes distributed over large areas.

The Spreading Factor (SF), a central parameter of the
LoRa physical layer, determines the symbol duration and
robustness of the encoding. Higher values yield exponen-
tially higher symbol duration but also increased receiver
sensitivity. While multiple transmissions using different SFs
are not perfectly orthogonal to each other, they interfere
very little at similar Signal to Noise Ratios (SNRs) [3].

These unique characteristics of the LoRa physical layer
led to rapidly expanding adoption and growing interest in
the research community. Its success motivated a number of
use cases that adopt the technology for applications that
go beyond sensing, including industrial automation [8] and
emergency communication [1, 15].

LoRa end devices are usually connected in a LoRaWAN
network, with one or multiple gateways covering a specific
geographical area and connecting to the end devices in a
star topology. The gateways are interconnected via a central
server or cloud infrastructure. A regional frequency plan
defines recommended transmission channels, which can be
combined with the available semi-orthogonal SFs to enable
many collision-free transmissions in parallel.

Commercial LoRa gateways are, however, limited in their
number of parallel demodulation paths [10], whereas Soft-
ware-Defined Radio (SDR)-based LoRa receivers usually cover
only a single channel and SF. They are, therefore, not suited
to experimentation or deployment in scenarios where the
required data rates or number of end devices necessitate the
simultaneous use of many channels and SFs.

To overcome this limitation, we present a software-defined
LoRa gateway capable of receiving on multiple channels and
SFs simultaneously, achieving a very high Packet Reception
Rate (PRR) even under high channel utilization, and reaching
a higher performance than previous software-defined LoRa
transceivers. In addition, we add a mechanism to receive all
packets independently from their sync word value (a field
in the preamble used for network partitioning), similar to
WLAN’s monitor mode. Our implementation is published as
Open Source software as part of FutureSDR.1

1https://github.com/futuresdr/futuresdr
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2 Background and Related Work
In this work, we investigate the performance of LoRa gate-
ways under high channel utilization and compare our
software-defined multichannel receiver against a state-of-
the-art commercial hardware gateway.

While the regional parameters vary depending on the area
of deployment, we focus on the eight 125 kHz uplink chan-
nels of the EU868 frequency plan. Our results are, however,
transferable to all common regional parameters.

2.1 Scalability
As the number of end devices per network and the number
of networks deployed in an area increase, the channel uti-
lization rises. Additionally, networks and deployments can
also be designed with the coexistence of different channels
and SFs in mind. This opens up new use cases for which the
capacity of a single LoRa link would not be sufficient.

Therefore, the scalability of LoRa networks has come into
the focus of researchers in recent years. Employing simu-
lations of very large networks, these studies highlight the
need for sophisticated network planning to avoid or at least
minimize packet collisions, i.e., concurrent transmissions on
the same channel and SF [5, 8, 11, 13].

However, it has also been noted that the limited number of
demodulation paths in a commercial gateway can be a major
limiting factor under high channel utilization since it limits
the number of concurrently receivable packets far below the
theoretical maximum of available channel and SF combina-
tions [6]. While this limitation is clearly documented in the
specification of commercial gateways (e.g., Semtech SX1302
[10]), relevant implementation details like prioritization of
packets of different SFs arriving in parallel are not known.

With our controlled experiments on a Semtech SX1302-
based LoRa gateway, we demonstrate this limitation and
provide first insights into the packet-dropping behavior of
commercial gateways under high channel utilization.

Furthermore, this limit of commercial gateways is merely
the result of a cost-benefit analysis since massively concur-
rent transmissions were rare in traditional and sparsely de-
ployed LoRa networks. With the recent developments in the
deployment and new use cases of LoRa networks, it might
be beneficial to relax this limitation, even if it incurs higher
hardware costs for the gateways.

While simulations can give first insights into this matter,
the research community lacks the tools necessary for practi-
cal experimentation and verification. All commercial gate-
ways are limited in their number of parallel demodulation
paths, with the 16 paths of the SX1302 chip already being
the highest number available. With our software-defined
gateway implementation, we enable the reception of par-
allel transmissions on all channel and SF combinations (8

channels × 6 SFs = 48 in case of the EU868 frequency plan),
providing unprecedented receive capabilities.

2.2 Software-Defined LoRa Transceivers
While we are the first to propose an efficient software-defined
LoRa gateway capable of decoding all channels and SFs simul-
taneously, there has been much previous work on providing
software defined LoRa transceiver capabilities.

Robyns et al. released the first fully reverse-engineered
software defined LoRa transceiver for the popular GNU Radio
SDR framework in 2017 [9]. Frame detection and synchro-
nization is performed using a modified version of the Schmidl-
Cox algorithm. However, the receiver sensitivity is compara-
bly low, achieving 100 % PRR only at 20 dB SNR, as opposed
to the negative SNR possible with commercial LoRa receivers.

Based on this, Tapparel et al. developed an improved re-
ceiver implementation employing a different synchroniza-
tion algorithm to achieve receiver sensitivity comparable
to commercial LoRa devices [12]. The synchronization algo-
rithm, originally proposed by Xhonneux et al. [14], iteratively
estimates sampling time and frequency offsets, achieving a
good approximation at low overall complexity. This is gener-
ally considered the state-of-the-art implementation for LoRa
on SDR due to its superior performance, together with the
high accessibility due to the integration into the GNU Radio
framework.

A recent implementation by Busacca et al. [2] also pro-
vides full transceiver capabilities and integrates an automatic
repeat request mechanism to improve reliability. Extensive
experimentation using the Colosseum real-time channel em-
ulator evaluates the receiver sensitivity under noise and
packet collisions and explores additional mechanisms like
interference cancellation and end device localization. How-
ever, the receiver can only monitor a single channel and SF,
and scalability is not addressed. Furthermore, the implemen-
tation uses the Python programming language, which is not
intended for compute intensive real-time processing, and
does not integrate directly with any SDR framework.

We, in turn, based our implementation on the LoRa trans-
ceiver by Tapparel et al. [12]. We extend the synchronization
procedure to no longer require prior knowledge of the sync
word and implement an efficient multichannel receiver cover-
ing all channels and SFs. Our software defined LoRa gateway
can decode transmissions on all channels and SFs simultane-
ously, even at a channel utilization of 100 %. Furthermore, our
implementation uses the Rust-based FutureSDR2 framework
instead of GNU Radio, bringing improved portability, fine-
grained control over the scheduler, and improved processing
speed, as we demonstrate in our evaluation.

2https://www.futuresdr.org/
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3 SDR-based LoRa Node
Our software defined LoRa transmitter and receiver are based
on the work by Tapparel et al. [12]. We ported the GNU Radio
implementation to our Rust-based FutureSDR framework,
improved the synchronization algorithm, and optimized the
execution speed.

3.1 LoRa Packet Structure
Figure 1 shows the general structure of a LoRa packet. The
preamble starts with unmodulated upchirps, encoding the
value 0. The sync-word, which is essentially a sub-network
ID encoded in the preamble to isolate networks from each
other, is encoded into two consecutive symbols. The pream-
ble is delimited by 2.25 downchirps, which mark the begin-
ning of the header. Header and payload symbols are encoded
as modulated upchirps.

3.2 General Receiver Design
Our software-designed receiver is split into blocks perform-
ing the sequential operations necessary to decode symbols,
as can be seen in Figure 2.

The FrameSync block performs packet detection by con-
tinually demodulating windows with stride and length of
one symbol duration. Once the necessary number of consec-
utive symbols encoding the same value has been observed, a
packet is detected, and the block performs synchronization
of time and frequency offsets.

The FFT-Demod block demodulates the now-aligned win-
dows of samples into coded and interleaved symbols. The
following blocks reverse the various coding steps of the
transmitter, namely gray mapping, interleaving, and ham-
ming coding. The header decoder intercepts the beginning
of the frame, calculates the coding rate, payload length, and
other parameters encoded in the header, and informs the
FrameSync block of the expected packet length. It further

CFO

Preamble
Header

+ Payload

Symbol Boundaries

Sync Word
(0x34)

Detection Windows
(un-synchronized)

STO

Figure 1: LoRa packet with annotated symbol bound-
aries and receiver offsets. Detection is performed with-
out synchronization in time or frequency.

LoRa Receiver
FrameSync
Packet Detection,
Synchronization

FFT
Demod

Gray
Mapping Deinterleaver

Hamming
Decoder

Header
Decoder

IQ Stream Async. MessageByte Stream

Decoder
Dewhitening,

CRC check

Figure 2: Software-defined LoRa receiver structure,
adopted from [12].

checks the header checksum, and initiates a reset if the check
fails. After this, it forwards the appropriate number of pay-
load symbols, before expecting the next header.

Finally, the payload symbols are de-whitened and deliv-
ered to the application.

3.3 Packet Detection and Synchronization
The detection window is not necessarily aligned to the sym-
bol boundaries, both in time and frequency. It may expe-
rience Sampling Time Offset (STO) and Carrier Frequency
Offset (CFO), as illustrated in Figure 1. Additionally, Sam-
pling Frequency Offset (SFO) might cause misalignment over
time.

The CSS modulation encodes values by shifting the base
chirp in frequency or, due to its linear nature and resistance
to aliasing, equivalently in time. Therefore, each potentially
misaligned detection window during this part of the pre-
amble will contain a modulated upchirp encoding the same
value. Furthermore, this decoded value can be used as a first
estimate of the STO, which is measured in sample durations:
an STO of one shifts the observed symbol value by one and
can be compensated simply by re-aligning the demodulation
window by one sample.

The synchronization algorithm by Xhonneux et al. [14]
is used to estimate and compensate the STO, CFO, and SFO
values iteratively. This algorithm is a low-cost approximation
since the offsets are all interrelated, and joint optimization is
too costly for a real-time receiver. Therefore, the offsets are
individually estimated one after the other, using the early
rough estimate of the STO to achieve a better estimation of
the frequency offsets.

3.4 Additional Sampling Time Offset
Correction

Finally, Tapparel et al. [12] introduce an additional step of
correcting the STO in case it is misaligned after the iterative
offset correction.
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Figure 3: Receiver sensitivity without prior knowl-
edge of the sync word, with (FutureSDR) and without
(GNURadio) improved sampling time offset correction.
For SF7 and SF9, simulated over 2000 packets per sam-
pling point with random sampling time offset.

3.4.1 Sync Word Re-Synchronization. For this, they compare
the expected value of the sync word with the observed value
after the initial offset correction.

The sync word is an 8 bit value split into two 4 bit nibbles,
each represented by a symbol in the preamble. For robust-
ness, each nibble is left-shifted by 3 bit prior to modulation
since the preamble employs none of the error correction
techniques used for the payload.

Due to the potentially inaccurate iterative offset estima-
tion, the demodulation of the sync word might be affected by
a small remaining STO. If both sync word symbols deviate
from the expected values by the same margin and not more
than ±2, the STO is adjusted by this amount.

3.4.2 Sync Word Independent Re-Synchronization. While
Tapparel et al. [12] rely on the knowledge of the sync word
value, we instead exploit the syntactical structure of the
encoded sync word to perform this action.

The left shift spaces all possible values as multiples of 8,
thus making it possible to identify a remaining STO of up
to ±3 without prior knowledge of the sync word encoded in
the preamble. In practice, correct primary synchronization
will yield a remaining STO of not more than ±1. This makes
it possible to perform this action without knowing the actual
value of the encoded sync word.

While it is possible to deactivate this re-synchronization
procedure entirely in the GNU Radio implementation from
[12], without this step the iterative offset approximation
algorithm incurs occasional synchronization failures even
at relatively high SNR values, as can be seen in Figure 3.
In this and the following plots, the error bars indicate the
confidence interval of the mean for a confidence level of 95 %.
Our improved algorithm, on the other hand, does not rely

Demodulator 
SF5-SF10

Demodulator 
SF5-SF12

Pa
ck

et
 D

et
ec

to
rs

SF12

SF11

SF10

SF9

SF8

SF7

SF6

SF5

An
al

og
 F

ro
nt

-E
nd

Ch
an

ne
liz

er

SX1302 (simplified)
×64 total

×16 total

Pa
ck

et
 H

an
dl

er

Figure 4: Simplified architecture of the Semtech SX1302
LoRa gateway baseband processor derived from [10].
64 packet detectors for the eight supported SFs and up
to eight configurable channels. 16 parallel demodula-
tion paths in total, eight supporting SF5 to SF10, eight
supporting all eight SFs.

on prior knowledge of the sync-word value. Therefore, it
can reliably decode all packets that arrive with an SNR value
within the receiver sensitivity, even if the sync word values
are not known beforehand.

4 Commercial LoRa Gateways
Commercial LoRa gateways are available from different ven-
dors, but all are based on the Semtech concentrator chip
series. The gateways support three independent decoding
chains: (1) a Frequency Shift Keying (FSK) receiver, (2) a
high-speed LoRa decoder that supports up to 500 kHz chan-
nels, and (3) a multichannel LoRa receiver that can decode
all SFs on eight 125 kHz channels in parallel. While the first
two types of links support higher throughput and are mainly
intended for communication between gateways, the multi-
channel receiver is designed for communication with LoRa
end devices.

We focus on the multichannel receiver since SDR imple-
mentations for FSK and single-channel LoRa are readily avail-
able, and the heavily parallelized multichannel, multi-SF re-
ceiver presents a challenge. Here, there previously were no
SDR implementations available, and the Semtech chips have
limitations, degrading performance in scenarios with higher
network load.

A schematic overview of the receiver is depicted in Fig-
ure 4. It channelizes the incoming signal into eight 125 kHz
channels, each with packet detectors for all SFs. Once a
packet is detected, it is forwarded to a decoder. While there
are packet detectors for all channel and SF combinations, the
number of decoders is limited.
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In this paper, we examine the Semtech SX1302, which is
a state-of-the-art model that offers 16 decoders, the highest
number available on the market. Eight decoders support all
SFs, while the other eight are limited to SFs five to ten. This
number should be considered with regard to the maximum
number of 64 possible parallel receptions (eight channels,
eight SFs). These demodulation paths are shared between
all packet detectors and present a bottleneck when a large
number of packets arrive in parallel.

4.1 Gateway Saturation
To demonstrate this effect, we connect a LoRa gateway based
on a Semtech SX1302 concentrator chip to an Ettus Research
B200mini SDR. Figure 5 shows the setup. The devices are
connected via cable to improve reproducibility, minimize
interference, and comply with regulatory restrictions regard-
ing spectrum utilization.

To evaluate the receive performance of the gateway, we
synthesize complex baseband traces with varying spectrum
utilization and transmit them with the SDR. To this end, we
generate 30 s traces that contain frames on eight channels
each with SFs from seven to twelve. The payload size of the
transmitted packets is fixed to 64 Byte, with explicit header
mode and coding rate 7/8. Per channel and SF, we calculate
the number of frames required for a given channel utilization
and distribute them randomly but without overlap in the time
window. Note that frames with different SFs may well overlap
on the same channel while still being perfectly decodable.

The results are shown in Figure 6, where we plot the PRR
of the LoRa gateway for different channel loads, with equal
utilization on all channels and SFs. At around 20 % channel
load, packet bursts start overloading the gateway occasion-
ally, leading to packet loss and a decreasing reception rate.

SX1302-based 
Gateway

USRP B200mini 
SDR

Figure 5: Evaluation setup for the hardware gateway,
comprised of a Semtech SX1302 chip integrated into a
LoRa hat on a Raspberry Pi Zero, connected to a USRP
B200mini SDR.
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Figure 6: PRR of the hardware gateway over channel
load. Average over 20 traces of 30 s each.

With higher loads, this effect becomes more pronounced with
a drop in the reception rate to around 33 % as the gateway is
overloaded more frequently. This number can be explained
by the 16 available packet decoders for up to 48 concurrent
transmissions (eight channels with six SFs). Approaching
a channel load of 100 %, we can, furthermore, see a slight
increase again, which was unexpected to us at first.

To better understand this effect, we evaluated the utiliza-
tion of the decoders per SF, i.e., the time the decoders are
occupied with packets of a given SF. The results are shown
in Figure 7, where we plot the normalized air time of frames
over the channel load. Since we send frames with six SFs
on eight channels in parallel, the normalized transmitted air
time approaches 48. However, as we only transmit complete
packets, the actual air time for each channel and SF might
be slightly below the target channel load.

Again, the results show the saturation of the 16 decoders
for higher channel loads, but they also indicate the time
spent on decoding packets with a given SF. At lower channel
utilization, the gateway distributes the available resources
roughly equally between the SFs. However, since SFs eleven
and twelve can only be processed by eight of the 16 decoders,
these receive slightly fewer resources. We can see that shorter
frames gain precedence when approaching a fully loaded
channel with frames back-to-back. While implementation
details of the gateway are unknown, we believe that this
is because frames with lower SFs have shorter symbols (a
factor of 32 between SFs seven and twelve) and can trigger
frame detection much faster. Therefore, a decoder that be-
comes free is more likely to pick up a frame with a lower SF.
This behavior explains the increased reception rate at high
loads in Figure 6, since spending proportionally more time
with shorter frames increases the number of received frames.
The time spent to decode a single frame with SF12 could
be used to decode 18 frames with SF7, for example. (While
the symbols of frames with SF7 are 32 times shorter, each
individual symbol decodes fewer bits, resulting in a factor of
≈18 in terms of throughput.)
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Figure 7: Normalized reception time per SF over chan-
nel load for hardware gateway. Averaged over 20 traces
of 30 s for each channel utilization. At a channel uti-
lization of 100% on all 48 channel–SF combinations,
the transmitted time-on-air approaches 48.

4.2 Limitations of Commercial Gateways
With these experiments and detailed evaluations of commer-
cial LoRa gateways, we have an unprecedented understand-
ing of their implementation and performance, particularly in
scenarios with high channel load. For traditional LoRa net-
works and lower penetration rates, these scenarios were rare,
and the cost of over-provisioning the receiver hardware to
cope with occasional bursts was likely not economical. How-
ever, following recent trends, these limitations might have a
more significant impact in the future. Furthermore, the cur-
rent generation of commercial gateways is not well suited
to study and experimentally evaluate these new scenarios.
To highlight this limitation, we discuss several implications
of the current gateway design.

4.2.1 Denial of Service. First, an attacker could cause out-
ages by simply keeping the decoders busy with bogus frames.
This enables an efficient Denial-of-Service (DoS) attack since
it is sufficient to occupy the available demodulation paths
in the gateway rather than jamming all channels with the
necessary power level. This was also found by simulation
results, where the primary cause for packet loss under high-
load scenarios was identified to be an overloaded receiver,
rather than interference [6].

We, furthermore, found that it is enough to send a header
to keep the decoders busy for the rest of the frame, similar
to the truncate after preamble attack on Wi-Fi and Zigbee by
Gvozdenovic et al. [4]. Due to LoRa’s high symbol duration,
one header can block a demodulation path for multiple sec-
onds using a high SF, making the attack even more efficient.

4.2.2 Covert Transmissions. Looking at this from a slightly
different angle, we can also use this behavior to establish

Detection

Covert Packet

Jamming 
Preambles

Figure 8: Spectrogram of an RF trace of a covert LoRa
transmission. Eight jamming packets are transmitted
on four adjacent channels. An additional transmission
on a different channel starts after the gateway has de-
tected the jamming packets.

a covert channel, hiding transmissions from a commercial
gateway. We demonstrate this by generating signals with
eight or 16 concurrent transmissions, depending on the num-
ber of available decoders for the SF of the frame that we
want to hide, and send it with a slight delay on an unoc-
cupied channel. The resulting spectrogram can be seen in
Figure 8, which shows time on the x-axis and frequency on
the y-axis. In this case, eight frames with SF11 and SF12 are
sent on the upper four channels. Since there are only eight
decoders available for these SFs, the delayed frame with SF11
is invisible to the gateway. However, a gateway that does
not listen to the upper four channels or even a LoRa node
that is limited to a single channel and SF could receive it
if configured accordingly. This scheme is, furthermore, not
limited to a single covert frame, as more channels and SF
combinations are available.

In these experiments, we constructed the situations delib-
erately. Yet, with the increasing density of LoRa deployments
and new applications, such a situation could also happen in
the real world, leading to performance issues. Using a static,
periodic channel access scheme could even lead to situations
where nodes experience systematic outages, despite high
SNR and no interference on the given channel.

5 Software-Defined LoRa Gateway
To overcome this issue and study LoRa networks with a high
channel load in greater detail, we created a software-defined
LoRa gateway that does not have the restrictions of commer-
cial LoRa gateways. To this end, we use the single-channel,
single-SF receiver to create a flexible multichannel version
that can cover all common LoRaWAN configurations and
receive packets on all channels and SFs simultaneously. Re-
ceived packets can optionally be forwarded to a server using
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Figure 9: Total number of received packets over chan-
nel load for hardware and software gateway. Our
software-defined implementation receives the vast ma-
jority of the sent packets, even at high duty cycles.

Semtech’s UDP-based protocol. At the moment, it is designed
specifically for the EU868 frequency plan, comprising eight
125 kHz channels with a channel spacing of 200 kHz, each
supporting SFs between seven and twelve.

The combination of bandwidth, channel spacing, and the
fact that the receiver is designed with an integer oversam-
pling factor makes channelization non-trivial. We tried vari-
ous approaches but found a channelizer using a Polyphase
Filter Bank (PFB) with an additional resampler for each chan-
nel to be the most efficient. The PFB channelizer is an effi-
cient algorithm that separates a large number of channels
with minimal runtime overhead. While this design is lim-
ited to evenly spaced channels with fixed bandwidth, this is
common also for other LoRaWAN frequency plans.

The channelizer splits the signal into eight 200 kHz chan-
nels, and each channel is upsampled by a factor of 2.5 with a
rational resampler, which is also based on a PFB. This results
in a 500 kHz signal per channel, i.e., an oversampling factor
of 4. For each channel, the signal is fed into a number of
parallel packet detectors, one for each SF.

5.1 Software-Defined Gateway Performance
To demonstrate the advantage of our software-defined LoRa
gateway, we conduct the same experiments as with the com-
mercial hardware gateway and measure the number of re-
ceived packets at different channel loads. To measure the
performance of the SDR receiver, we connect the SDR via
cable, as we did with the commercial LoRa gateway.

The results are depicted in Figure 9. They clearly show
that our multichannel receiver does not experience overload-
ing and instead achieves near-perfect reception even for a
fully loaded channel. The few misses at higher loads occur
randomly due to interference from frames with different SFs.

Raspberry
Pi 4

Notebook Workstation

Device

1

10

20

30

40

Re
al

-T
im

e
Fa

ct
or

Framework
GNU Radio
FutureSDR

Figure 10: Execution speed of our software-defined
multichannel gateway over multiple hardware plat-
forms and in comparison to an equivalent GNURadio
implementation, as multiple of real-time. Measured
over 100 iterations of 30 s transmissions.

While different SFs are nearly orthogonal to each other, con-
current frames on the same channel still contribute to the
interference level. With interference from the five higher
SFs, the least robust configuration might fail occasionally.
This is, however, a normal effect of the system and not an
issue of our receiver implementation. Even with this effect,
our software-defined gateway can decode close to all packets
with arbitrary channel access patterns, clearly outperform-
ing the commercial gateway and overcoming the limitations
described in Section 4.2.

5.2 Runtime Complexity
When starting the project, it was unclear to us if a software-
defined LoRa gateway would be able to run in real-time on a
standard desktop PC or even an embedded PC, like a Rasp-
berry Pi. Furthermore, we were curious how efficiently such
a complex receiver with many components (≈350 blocks)
would work on the GNU Radio and FutureSDR frameworks.
To this end, we also implemented an equivalent GNU Radio-
based LoRa multichannel receiver. Both implementations
use the exact same signal processing algorithms, the same
parameters, and the same filter taps.

To measure the runtime complexity of the systems in a
reproducible fashion, we generate traces of IQ data with a
duration of 30 s for a channel load of 100 % and decode the
files. With this approach, both implementations receive the
same frames and trigger similar code paths. As long as such
a trace can be processed in less than 30 s, the receiver is
considered to be real-time capable.

We conducted the experiments on a Raspberry Pi 4, a
Lenovo Thinkpad P14s, and a desktop PC with an AMD
Ryzen 9 5900X CPU. For each measurement, we performed
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100 runs and calculated the real-time factor, i.e., how fast the
trace was processed with regards to its duration of 30 s.

The results are shown in Figure 10. They show that all
software-defined receivers can run in real time, even though
the GNU Radio implementation is barely above one on the
Raspberry Pi 4. With this performance, other applications on
the same system or interference from background tasks could
become problematic in an actual deployment. FutureSDR, in
turn, offers a speedup of 30 % on the Raspberry Pi, providing
more headroom.

On the PCs, both implementations can run in real-time
without problems, leaving ample resources for other tasks or
to add a decoding path for FSK or LoRa channels with higher
bandwidth, similar to the commercial gateway. On these
platforms, the difference between FutureSDR and GNU Radio
is more pronounced with a speedup of ≈1 (1.2 for the laptop,
0.95 for the desktop). Relying on FutureSDR, furthermore,
benefits from the advantages provided by the framework (e.g.,
portability and the option to use custom CPU schedulers and
hardware accelerators in future extensions of the receiver).

6 Conclusions
In this paper, we presented the first software-defined LoRa
gateway, capable of decoding multiple channels and SFs in
parallel. In contrast to commercial LoRa nodes and gate-
ways, it does not run into overload situations for networks
with high channel utilization. Furthermore, it can decode
all frames, independent from the LoRa sync word, provid-
ing functionality similar to monitor mode in WLAN net-
works. Based on an existing single-channel and single-SF
implementation, it provides state-of-the-art signal process-
ing performance. We believe that our implementation can
serve as an important tool for studying LoRa networks un-
der high channel loads, which become increasingly relevant
given the number of deployments and the interest in new
use cases of LoRa networks. Our LoRa implementation is re-
leased as Open Source software together with examples that
demonstrate how to connect it to LoRaWAN and Meshtastic
networks.
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