
Power Matters: Automatic Gain Control for a
Software Defined Radio IEEE 802.11a/g/p Receiver

Bastian Bloessl, Christoph Sommer and Falko Dressler
Distributed Embedded Systems Group, University of Paderborn, Germany

{bloessl,sommer,dressler}@ccs-labs.org

Abstract—Software Defined Radios (SDRs) have become a
fundamental building block for research on wireless networks.
Yet, using this platform for experiments in the field is hindered
by many practical difficulties, an important one being the need
for Automatic Gain Control (AGC). We demonstrate a way of
implementing an AGC algorithm directly in the FPGA where we
are able to meet tough timing constraints. This allows using SDRs
not just for lab experiments but also for measurement campaigns
or deployments in the field. With extending our GNU Radio-based
Open Source stack for IEEE 802.11a/g/p WLAN with AGC, we
provide an SDR platform that can be integrated into existing
WiFi networks just as well as into future vehicular networks.

I. INTRODUCTION

Software Defined Radios (SDRs) have proven to be in-
valuable tools to develop proof-of-concept prototypes of new
communication technologies as well as to gain deeper insights
into existing technologies [1]. One particularly interesting class
of SDRs is realized by driving a lightweight radio frontend
from software running on a host computer (as opposed to a
fully integrated FPGA solution): Such an SDR allows for rapid
prototyping and easy debugging in the lab as well as quick
reconfigurability in the field. One of the most popular examples
is the Ettus USRP platform running GNU Radio [2].

Aside from experiments in the lab, SDRs are also considered
for field tests, be it for realizing visions of true cognitive radios
or for future proofing products with long life-cycles such as
cars in vehicular networks [3]. However, the use of SDRs for
performing experiments in real life conditions is hindered by
many difficulties, ranging from tight protocol timing constraints
in the medium access layer to having to deal with changing
input power levels.

One particularly complex example is IEEE 802.11 WLAN
and application stacks building on it, e.g., the IEEE 1609
Wireless Access in Vehicular Environment (WAVE) stack for
vehicular networking which builds on IEEE 802.11p. In earlier
work, we presented a GNU Radio-based IEEE 802.11a/g/p
receiver [4] that was fitted for operation with an Ettus USRP
N210. The software stack was shown to be interoperable with
commercial WiFi cards as well as IEEE 802.11p prototypes and
is released under an Open Source license.1 We were even able
to investigate the feasibility of a fully software-based solution
and standard compliant broadcast transmissions with marginal
modifications of the FPGA [5].

1http://www.wime-project.net

Yet, one problem remains unaddressed for deployment and
experimentation in the field: Decoding frames reaching the
receiver with a wide range of power levels requires it to flexibly
adapt its input amplifier, setting the receive gain to an optimal
value for each incoming frame. If the receive gain is set too
high, clipping would render the frame undecodable. If it is
set too low, the A/D converter’s resolution would not be used
efficiently, resulting in high relative quantization noise. Setting
a fixed gain is fine for lab environments with relatively static
receive powers but infeasible for measurements in the field. In
off-the-shelf hardware this process is handled by a dedicated
component, the receiver’s Automatic Gain Control (AGC).

Since optimizing the receive gain is a prerequisite for
decoding the frame, AGC has a very tight time window for
operation. In IEEE 802.11 WLAN, the window starts from
detecting an incoming frame and must not be longer than the
short training sequence. This poses a problem for SDRs based
on GNU Radio running on a host computer, where the round
trip time between SDR and the PC is in the order of ms, while
the short training sequence lasts only 8 µs for IEEE 802.11a/g
and 16 µs for IEEE 802.11p.

The solution we are proposing is to move AGC into the
small FPGA on the radio frontend. Any such solution will
always be specific to the communication stack in question, as
demands are very different for, e.g., WLAN and LTE. We
chose IEEE 802.11a/g/p as the target technology to augment our
aforementioned existing Open Source software stack. Being
able to correctly tune the input amplifier even in dynamic
scenarios turns our SDR solution into a viable measurement
equipment for outdoor experiments.

II. IMPLEMENTATION OF AGC

We implement AGC on the FPGA of the Ettus N210 using
Xilinx ISE version 12.3.2 The N210 consists of an FPGA
board for digital signal processing of the baseband signal that
can be equipped with various RF frontends for operation on
different frequencies. To implement AGC we have to extend
the FPGA to directly control the amplifiers of the frontend,
rendering the implementation frontend specific. Like in [5],
we use the XCVR2450, allowing for operation on the 2.4 GHz
and 5.9 GHz band.

The XCVR2450 uses a MAX2829 transceiver chip from
Maxim Integrated that supports two different gain modes.

2We experienced problems with corrupt bitstreams on more recent versions.



During normal operation, the gain is set via SPI. Furthermore,
the transceiver can be configured to set the gain directly via
pins, avoiding any additional delay.

Concerning signal processing, there are two possible lo-
cations where we can hook in AGC functionality. Either
directly after the A/D converter or after the signal is channelized
and downsampled. Implementation after the A/D converters
minimizes delay but bears additional problems: Since the RF
frontend can only tune to fixed frequencies, a shift to the carrier
frequency is done in digital domain. Therefore, the signal will
not be centered on the carrier frequency directly after the A/D
converter, making it harder to exploit the autocorrelation pattern
of the preamble for frame detection.

Given these drawbacks, we implemented AGC based on the
channelized samples and, thus, operate on the very same data
that is also streamed to the PC. The general AGC procedure
is to detect a frame, estimate its power level, and adjust the
gain to bring it as close as possible to a desired reference
power level. We determined the reference level empirically
with a comprehensive set of Packet Delivery Ratio (PDR)
measurements with different input power levels and RX gains.

Frame detection is implemented based on two mechanisms.
First, we use autocorrelation to exploit the cyclic pattern of the
short training sequence. Second, we trigger frame detection if
the input power level exceeds a threshold where it overdrives
the A/D converters and thus distorts the cyclic pattern.

The gain of the MAX2829 transceiver can be distributed
across two amplifiers, a Low Noise Amplifier (LNA) close to
the antenna and a Variable Gain Amplifier (VGA) at a later
signal processing stage. While the LNA provides a coarse
resolution with only three steps for gain values 0 dB, 15 dB,
and 30 dB, the VGA allows for finer resolution, covering 62 dB
in steps of 2 dB. Both stages combined provide a gain range
of 92 dB. When no frame is detected the AGC will switch to
an intermediate level of 46 dB.

III. EVALUATION

To highlight the need for AGC and to show its performance
improvements over fixed gain configurations we used a setup
with two WiFi receivers. One placed in close proximity of the
SDR sending with high power (15 dBm) and, several meters
away, another one sending a lower power signal of −15 dBm,
i.e., the difference was greater than 30 dBm.

In a first experiment, we plotted the signal power in time
domain to measure the delay that the AGC needs to reconfigure
the gain. This delay is very interesting since the group delay
of the digital signal processing chain in the FPGA is unknown.

The results are plotted in Figure 1a for the low power
transmitter and in Figure 1b for the high power transmitter.
Two observations are interesting in this context: First, we
see that both signals are tuned to the very same power level,
demonstrating basic functionality of the AGC, i.e., the low
power signal is amplified while the high power signal gets
attenuated. Second, the time to detect the frame, reconfigure
the gain, and stabilize after a transient phase is shorter that the
short training sequence of the WiFi frame. Hence, the actual

time (in µs)

R
X

 p
o
w

er
 (

in
 d

B
)

0 100 200 300 400

−
4
0

−
2

0
0

0 16 32

−
5

5

(a) low TX power

time (in µs)

R
X

 p
o
w

er
 (

in
 d

B
)

0 100 200 300 400

−
4
0

−
2

0
0

0 16 32

−
5

5

(b) high TX power

Figure 1. AGC delay when (a) increasing or (b) decreasing gain.

0 10 20 30 40 50

0
0

.5
1

RX Gain (in dB)

P
D

R

static

AGC

(a) low TX power

0 10 20 30 40 50

0
0

.5
1

RX Gain (in dB)

P
D

R

AGC

static

(b) high TX power

Figure 2. Packet Delivery Ratio when using fixed RX gain settings or AGC.

frame is not corrupted by changing power levels, proving the
feasibility of our approach.

In a second test, we highlight the need for AGC and show
possible performance improvements. We use the same setup
and measure the PDR for BSPK1⁄2-modulated frames with a
payload of 128 Byte. For both configurations, we vary the
receive gain to trigger the expected behavior. Figure 2a depicts
the PDR of the low power transmitter. We see that for low
receive gains, the frames cannot be decoded since the power
level is very low, resulting in a high relative quantization
noise. The exact opposite happens for high powered signals (cf.
Figure 2b): With low receive gains, the frames can be decoded
without problems, but for higher gains the A/D converters
overdrive, resulting in clipping noise. For both configurations,
we also measured the PDR with AGC enabled and were able
to receive close to all frames.

A simple live demo of the AGC decoding frames of a WiFi
card that varies its TX power level can be found on YouTube.3

REFERENCES

[1] K. R. Chowdhury and T. Melodia, “Platforms and Testbeds for Experimen-
tal Evaluation of Cognitive Ad Hoc Networks,” IEEE Communications
Magazine, vol. 48, no. 9, pp. 96–104, September 2010.

[2] E. Blossom, “GNU Radio: Tools for Exploring the Radio Frequency
Spectrum,” Linux Journal, no. 122, June 2004. [Online]. Available:
http://www.linuxjournal.com/article/7319

[3] O. Altintas, M. Nishibori, T. Oshida, C. Yoshimura, Y. Fujii, K. Nishida,
Y. Ihara, M. Saito, K. Tsukamoto, M. Tsuru, Y. Oie, R. Vuyyuru,
A. Al Abbasi, M. Ohtake, M. Ohta, T. Fujii, S. Chen, S. Pagadarai, and
A. M. Wyglinski, “Demonstration of Vehicle to Vehicle Communications
over TV White Space,” in IEEE VTC2011-Fall. San Francisco, CA:
IEEE, September 2011, pp. 1–3.

[4] B. Bloessl, M. Segata, C. Sommer, and F. Dressler, “An IEEE 802.11a/g/p
OFDM Receiver for GNU Radio,” in ACM SIGCOMM SRIF 2013. Hong
Kong, China: ACM, August 2013, pp. 9–16.

[5] B. Bloessl, A. Puschmann, C. Sommer, and F. Dressler, “Timings Matter:
Standard Compliant IEEE 802.11 Channel Access for a Fully Software-
based SDR Architecture,” in ACM WiNTECH 2014. Maui, HI: ACM,
September 2014, pp. 57–63.

3https://www.youtube.com/watch?v=fHyiXIpfw2I


